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Abstract

The paper presents a theory for thin-walled, closed section, orthotropic beams which takes into account the shear
deformation in restrained warping induced torque. In the derivation we developed the analytical (‘‘exact’’) solution
of simply supported beams subjected to a sinusoidal load. The replacement stiffnesses which are independent of the
length of the beam were determined from the exact solution by taking its Taylor series expansion with respect to the
inverse of the length of the beam. The effect of restrained warping and shear deformation was investigated through
numerical examples.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Fiber reinforced plastic (composite), thin-walled beams are widely used in the aerospace industry and are
increasingly applied in the infrastructure. Thin-walled beams are often made with closed cross-sections
because of their high torsional stiffness.

Classical beam theories, which neglect bending–torsion coupling, transverse shear deformation and
torsional warping stiffness often fail to predict the behavior of closed section, composite beams. To avoid
the undesirable bending–torsion coupling, beams can be manufactured such that their layup is orthotropic
(Kollár and Springer, 2003), (however not necessarily symmetrical).

In this paper a new theory is presented for orthotropic, closed section thin-walled beams taking trans-
verse shear and restrained warping into account. There are composite beam theories (Massa and Barbero,
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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1998; Rehfield et al., 1988) which take transverse shear and restrained warping into account, however they
neglect the effect of shear deformation on restrained warping which may overestimate the warping stiffness.
This effect is explained for pure torsion below:

Classical beam theories, derived by Vlasov (1961) and also included in classical textbooks (Megson,
1990), calculates the bimoment ð bM xÞ and the Saint Venant torque ðbT svÞ as
bM x ¼ cEI xC bT sv ¼ cGI t# ð1Þ
where cEI x is the warping stiffness, cGI t is the torsional stiffness, # is the rate of twist (which is the first deriv-
ative of the rotation of the cross-section # = dw/dx), and
C ¼ � d#

dx
ð2Þ
where x is the axial coordinate. The torque ðbT Þ is the sum of the Saint Venant torque ðbT svÞ and the re-
strained warping induced torque ðbT xÞ
bT ¼ bT sv þ bT x ð3Þ
where the latter is calculated as
bT x ¼ �
d bM x

dx
ð4Þ
Eqs. (1)–(4) give the well-known equation:
bT ¼ cGI t#�cEI x
d2#

dx2
ð5Þ
In the theory, presented in this paper, we assume that the rate of twist (#) consists of two parts
# ¼ #B þ #S ð6Þ

where subscripts ‘‘B’’ and ‘‘S’’ refer to the bending and shear deformations. (Note the similarity with the
Thimoshenko beam theory for the inplane deformations of beams, where the first derivative of the displace-
ment consists of two parts: dv/dx = v + c, where the first term is the rotation of the cross-section and the
second is the transverse shear strain.) bT x is calculated from #S as
bT x ¼ Sxx#S ð7Þ

where Sxx is the rotational shear stiffness. Eqs. (1), (3) and (4) are valid, however Eq. (2) is replaced
by
C ¼ � d#B

dx
ð8Þ
A theory, where the effect of shear deformation on restrained warping is taken into account (and the basic
idea of which for pure torsion is explained above) was derived in Kollár (2001) for open section composite
beams. This paper can be considered as the generalization of Kollár (2001) for closed section beams. Note
that Roberts and Al-Ubaidi (2001) and Wu and Sun (1992) also proposed the use of Eq. (6). The paper of
Roberts and Ubaidi only shows the importance of the effect but do not provide a complete theory, Wu and
Sun�s solution is rather complex and too tedious for design purposes.

The shear deformation in restrained warping may have a significant effect on short beams, and this effect
is not included in Massa and Barbero (1998) and Rehfield et al. (1988) which is indicated by the empty
boxes in the fifth column of Table 1.



Table 1
Comparison of composite beam theories

Beam models Not isotropic Not orthotropic Restrained
warping

Shear in
warping

Arbitrary closed
cross-section

Massa and Barbero (1998) * *
Mansfield and Sobey (1979) * Inaccurate for unsym. laminate *
Rehfield et al. (1988) * Inaccurate for unsym. laminate * *
Kollár and Pluzsik (2002) * * *
Urban (1955) * Inaccurate Doubly sym. cross-section
Present * * * *
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For thin-walled beams with symmetrical layup the effect of local bending stiffness is negligible, however
for unsymmetrical layups it may have a significant effect, which was shown in Pluzsik and Kollár (2002),
and hence we included the effect of local stiffness in the presented theory.

We must give credit to the work of Urban (1955), who developed a theory for closed section, isotropic

beams with uniform cross-section. Urban took into account the shear deformation in restrained warping,
however assumed a uniform shear flow which is not a reasonable assumption when the effect of restrained
warping is significant. His theory was extended to non-uniform cross-sections (non-prismatic beams) by
Kristek (1979). Both Urban and Kristek restricted their analysis for doubly symmetrical isotropic beams.

Vlasov—the pioneer of thin-walled beam theories—also presented a solution for isotropic, closed section
beams containing of flat walls (Vlasov, 1961). In his solution, in pure torsion, he assumed independent
warping functions for each wall-segment and hence no cross-sectional properties were presented, and hence,
his solution is rather complex.

Below we summarize the governing equations of Kollár (2001) which was developed for open section
composite beams. These equations will be generalized in this paper for closed section beams.

We consider transversely loaded, open section, orthotropic beams consisting of an arbitrary number of
flat wall segments (Fig. 1). The twist has two parts: one from bending (which causes warping) and an other
part from the restrained warping induced shear stress, as indicated by Eq. (6).
1.1. Basic assumptions

(1) The material of the cross-section behaves in a linearly elastic manner.
(2) The effect of the displacements of the axis of the beam is not taken into account in the equilibrium

equations.
(3) The effect of change in geometry of the cross-section is not taken into account in the equilibrium

equations.
(4) The Kirchhoff–Love hypotesis is valid for each plate element.
Fig. 1. Loads on a thin-walled beam.
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(5) The normal stresses in the contour directions are small compared to the axial stresses.
(6) The form of the axial strain is
�o
x ¼

du
dx
� y

dvy

dx
� z

dvz

dx
� x

d#B

dx
ð9Þ

where u is the axial displacement, vy and vz are the rotations of the cross-section in the x � y and x � z

planes, #B is the rate of twist from bending, and x ¼
R s

0
r ds is a section property called the sectorial

area. The last term in Eq. (9) represents an additional axial displacement of the cross-section, called
warping, proportional to the rate of twist from bending (Megson, 1990). vy, vz and #B can be calcu-
lated as follows:

vy ¼
dv
dx
� cy vz ¼

dw
dx
� cz #B ¼

dw
dx
� #S ð10Þ

where cy and cz are the shear strains and v and w are the displacements in the x � y and x � z planes,
respectively, w is the twist and #S is the rate of twist from shear.
The shear strain is supposed to be constant in the cross-section which is referred to as the first order
shear theory. Couplings between normal and shearing effects are neglected.

1.2. Governing equations

We summarize below the governing equations of open section, orthotropic thin-walled beams (Kollár,
2001), and present the expressions for calculating the shear stiffnesses.

The equilibrium equations in matrix form are as follows:
� d

dx

� d

dx

� d

dx
� d

dx
d

dx
�1

d

dx
�1

d

dx
�1

2666666666666666666664

3777777777777777777775

bM ybM zbM xbT svbV ybV zbT x

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
¼

py

pz

t

0

0

0

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
ð11Þ
where py and pz are the external loads in the y � x and z � x planes and t is the distributed torque (see
Fig. 1). The internal shear forces bV y ; bV z are defined as
bV y ¼
Z
ðN ng cos aÞds bV z ¼

Z
ðN ng sin aÞds ð12Þ
The internal moments bM y ; bM z, and bM x are
bM y ¼
Z
ðN ny þMn cos aÞds bM z ¼

Z
ðN nzþMn sin aÞds ð13Þ

bM x ¼
Z
ðN nxÞds ð14Þ
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Nng, Nn, Mn are the shear force, normal force and bending moment over unit length of the wall (Eq. (23)).
The torque consists of two parts: the Saint Venant torque and the warping induced torque:
bT ¼ bT sv þ bT x ð15Þ

The stress–strain relationship is the following:
bM ybM zbM xbT svbV ybV zbT x

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

¼

cEI yy
cEI yzcEI yz
cEI zz cEI x cGI t

Syy Syz Syx

Syz Szz Szx

Syx Szx Sxx

266666666666666664

377777777777777775

1

qy

1

qz

C

#

cy

cz

#s

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;

ð16Þ
where the generalized strains 1
qy
; 1

qz
and C are
1

qy
¼ �

dvy

dx
1

qz
¼ � dvz

dx
C ¼ � d#B

dx
ð17Þ
In the stiffness matrix cEI yy ; cEI zz; cEI yz are the bending stiffnesses, cEI x is the warping stiffness, cGI t is the
torsional stiffness and Sij are the shear stiffnesses.

The strain–displacement relationship is given by
1

qy

1

qz

C

#

cy

cz

#s

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;

¼

� d

dx

� d

dx

� d

dx

d

dx

d

dx
�1

d

dx
�1

d

dx
�1

26666666666666666666666666664

37777777777777777777777777775

v

w

w

vy

vz

#B

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
ð18Þ
It can be seen that the shear deformation in torsion (#s) is defined analogously to the shear deformation in
bending (cy and cz). We can calculate the bending, torsional and warping stiffnesses in the same way as for
beams made of isotropic material (Massa and Barbero, 1998). Below we will give the calculation of the
shear compliances which are defined as



Fig. 2. Definition of r.
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syy syz syx

syz szz szx

syx szx sxx

264
375 ¼ Syy Syz Syx

Syz Szz Szx

Syx Szx Sxx

264
375
�1

ð19Þ
According to Kollár (2001) the shear flow consists of three parts
q ¼ bV yqy þ bV zqz þ bT xqx ð20Þ
where qy, qz and qx are the shear flows caused by unit shear loads ðbV y ¼ 1; bV z ¼ 1Þ and by a unit torque
ðbT ¼ bT x ¼ 1Þ, respectively. The shear flows qy, qz and qx can be calculated according to the classical anal-
ysis of thin-walled beams (Megson, 1990). The expressions of syy, szz, sxx, syz, syx and szx are as follows
(Kollár, 2001):
syy ¼
Z

a66q2
y ds szz ¼

Z
a66q2

z ds sxx ¼
Z

a66q2
x ds ð21Þ

syz ¼
Z

a66qyqz ds syx ¼
Z

a66qyqx ds szx ¼
Z

a66qyqx ds
where a66 is the shear compliance of the wall (see Eq. (23)) (Fig. 2).
2. Problem statement

We consider thin-walled closed section prismatic beams. The beam consists of flat segments (Fig. 3) des-
ignated by the subscript k (k = 1,2, . . . ,K, where K is the total number of the wall segments). The cross-sec-
tion may be symmetrical or unsymmetrical and the layup of the wall is orthotropic. The beam may be
subjected to distributed loads (shown in Fig. 1) or to concentrated loads. We wish to determine the dis-
placements of the beam.
Fig. 3. Cross-section of the closed section, thin-walled beam.
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3. Governing equations

We apply the first five assumptions given in Section 1. The sixth assumption will be used only in Section
5. We employ the following coordinate systems (Fig. 4).

For the beam we use the x–y–z coordinate system with the origin at the centroid. For the kth segment we
employ the nk–gk–fk coordinate system with the origin at the center of the reference plane of the kth seg-
ment. n is parallel to the x coordinate, g is along the circumference of the wall, and f is perpendicular to the
circumference.

The axial displacements of an arbitrary point, s of the cross-section (Fig. 5) is given by Kollár and
Springer (2003)
uðsÞ ¼ �
Z s

0

r dg#þ
Z s

0

c0
ng dg ð22Þ
where g is the circumferential coordinate, r is given in Fig. 2, # is the rate of twist and c0
ng is the shear strain.

For an orthotropic wall the stress–strain relationship is given as (Kollár and Springer, 2003)
�o
n

�o
g

c0
ng

jn

jg

jng

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
k

¼

a11 a12 0 b11 b12 0

a12 a22 0 b21 b22 0

0 0 a66 0 0 b66

b11 b21 0 d11 d12 0

b12 b22 0 d12 d22 0

0 0 b66 0 0 d66

2666666664

3777777775
k

N n

N g

N ng

Mn

Mg

Mng

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
k

ð23Þ
where the calculation of the elements of the compliance matrix (aij, bij, dij) are given by Kollár and Springer
(2003), �o

n; �
o
g; c

0
ng are the strains of the reference surface of the wall, jn, jg, jng are the curvatures of the wall,

Nn, Ng, Nng are the in-plane forces (per unit length) and Mn, Mg, Mng are the moments (per unit length) as
illustrated in Fig. 6.
Fig. 4. Coordinate systems employed in the analysis of thin-walled beams with arbitrary layup.

Fig. 5. Definition of u, s, g.



Fig. 6. In-plane forces and moments of a plate element.
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The first and third rows of Eq. (23) are
�o
nk ¼ ða11ÞkN nk þ ða12ÞkN gk þ ðb11ÞkMnk þ ðb12ÞkMgk ð24Þ

c0
ngk ¼ ða66ÞkN ngk þ ðb66ÞkMngk ð25Þ
By definition Nngk is the shear flow, and we write
N ngk ¼ q ð26Þ
Ngk and Mgk are small and can be neglected (see Assumption 3)
N gk ffi 0 Mgk ffi 0 ð27Þ
From Eqs. (24) and (25) we obtain
�o
nk ¼ ða11ÞkN nk þ ðb11ÞkMnk ð28Þ

c0
ngk ¼ ða66Þkqþ ðb66ÞkMngk ð29Þ
When the wall is symmetrical (bij)k = 0, and consequently Eqs. (28) and (29) become
N nk ¼
1

ða11Þk
�o
nk ð30Þ

c0
ngk ¼ ða66Þkq ð31Þ
(Note however, that these relationships can be applied for unsymmetrical layups, provided that (a11)k is
evaluated at the ‘‘tension neutral’’ and (a66)k at the ‘‘torque neutral’’ surface, see Appendix A of Pluzsik
and Kollár (2002).)

By substituting Eqs. (22) and (31) (together with �o
nk ¼ du=dx) into Eq. (30) we have
N nkðsÞ ¼
1

ða11Þk
d

dx
�
Z s

0

r dg#þ
Z s

0

a66qdg

� �
ð32Þ
The equilibrium equation in the axial direction (see Fig. 7) results in
oN nk

ox
þ oqk

og
¼ 0 ð33Þ



Fig. 7. Forces in the x direction on an element of the wall.
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We substitute Eq. (32) into Eq. (33), and write
1

ða11Þk
o2

ox2
�
Z s

0

r dg#þ
Z s

0

a66qdg

� �
þ oqk

og
¼ 0 ð34Þ
By differentiating with respect to g, after algebraic manipulation, we obtain
�rk
o2#

ox2
þ ða66Þk

o2qk

ox2
þ ða11Þk

o2qk

og2
¼ 0 ð35Þ
This second order differential equation is valid for every wall segment (k = 1, . . . ,K). The following conti-
nuity conditions must be satisfied.

The shear flow must be continuous, hence, we have
qkjbk
2

¼ qkþ1j�bkþ1
2

k ¼ 1; . . . ;K ð36Þ
The axial displacements (u) of the adjacent walls must be identical. A necessary condition is that the deriv-
ative of the axial strains are identical. Consequently, we write
ða11Þk
oqk

og

����bk
2

¼ ða11Þkþ1

oqkþ1

og

����
�bkþ1

2

k ¼ 1; . . . ;K ð37Þ
(Note that in the above equations K + 1 must be replaced by 1, see Fig. 3.)
4. Solution of the governing equations in pure torsion

We consider a simply supported beam (Fig. 8) subjected to a sinusoidal torque t ¼ et sin px=l. At a simple
support w = 0, w00 = 0. We assume that the beam undergoes pure torsion. (Pure torsion occurs either when
Fig. 8. Simply supported beam subjected to a sinusoidal torque.
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the cross-section of the beam is doubly symmetrical or when the horizontal and vertical displacements (v, w)
of the beam�s axis are constrained.)

4.1. ‘‘Exact’’ solution of torsion for sinusoidal loads

The solution of the problem is assumed to be in the form of the following functions:
# ¼ e# cos
px
l

qk ¼ eqkðgÞ cos
px
l

ð38Þ
where e# is a constant and eqk is a function of g only.
Note that these functions satisfy the boundary conditions at x = 0 and x = l. By substituting Eq. (38)

into Eq. (35) we obtain
rk
p2

l2
e# � ða66Þk

p2

l2
eqk þ ða11Þk

oeqk

og2

� �
cos

px
l
¼ 0 ð39Þ
which results in the following second order, ordinary, inhomogeneous differential equation:
ða66Þk
p2

l2
eqk � ða11Þk

oeqk

og2
¼ rk

p2

l2
e# ð40Þ
The general solution is (Kreyszig, 1993)
eqke# ¼ rk

ða66Þk
þ C1;ke�kk

bk
2þg
� �

þ C2;ke�kk
bk
2�g
� �

ð41Þ
where
kk ¼
p
l

ffiffiffiffiffiffiffiffiffiffiffiffi
ða66Þk
ða11Þk

s
ð42Þ
By substituting Eq. (41) into Eqs. (36) and (37) we have
C1;ke�kk bk þ C2;k � C1;kþ1 � C2;kþ1e�bkþ1kkþ1 ¼ rkþ1

ða66Þkþ1

� rk

ða66Þk
ð43Þ

�ða11Þkkke�kk bk C1;k þ ða11ÞkkkC2;k ¼ �ða11Þkþ1kkþ1C1;kþ1 þ ða11Þkþ1kkþ1e�bkþ1kkþ1 C2;kþ1 ð44Þ
where k = 1, . . . ,K.
There are 2 · K equations from which the 2 · K unknowns (C1,k, C2,k, k = 1, . . . ,K) can be calculated for

a given e#. From the shear flow the torque and the load can be calculated (for a given e#) as
bT ¼ I qr dg ð45Þ

t ¼
Z l

0

bT dx ¼
Z l

0

I
qr dgdx ð46Þ
We emphasize that the shear flow (Eq. (41)) is the exact solution of the differential equation system, and
hence, they can be used even in the case when the stiffnesses of the walls differ significantly.

When the loading conditions are not sinusoidal, we can write the Fourier series expansion of the
load function. We obtain the solution of the problem by summing up the solutions of the elements of
the series.
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4.2. Solution by the Ritz method

In the following we derive an approximate solution of the above differential equations by the Ritz meth-
od. The potential energy of the beam is
P ¼ 1

2

Z l

0

I
N n�

o
n þ qc0

ng

� 	
dgdx�

Z l

0

#t dx ð47Þ
where the first term is the strain energy and the second term is the work done by the external load.
The axial force per unit length is (Eq. (33))
N n ¼ �
Z l

0

oq
og

dx ð48Þ
Eqs. (30), (31), (38), (48) and (47) result in
P ¼ 1

2

Z l

0

I
a11

l2

p2

oq
og

� �2

þ a66q2

 !
dgdx�

Z l

0

#t dx ð49Þ
The shear flow is assumed to be in the form of
q ¼ eqðgÞ cos
px
l

ð50Þ

eqðgÞ ¼X2K

i¼1

Ci/iðgÞ ð51Þ
where Ck are yet unknown constants and the functions /k are illustrated in Fig. 9 and are given below
/j ¼

g
bk
þ 1

2
when j ¼ k

� g
bkþ1

þ 1

2
when j ¼ k þ 1

0 else

8>>>><>>>>:

9>>>>=>>>>; when j 6 k ð52Þ

/j ¼
� 4g2

b2
k

þ 1 when j ¼ K þ k

0 else

8<:
9=; when j > K
The shear flow on the kth wall consists of three parts
eqk ¼ Ck�1/k�1 þ Ck/k þ CKþk/Kþk ð53Þ
Fig. 9. Functions /j (j = 1,2, . . . , 2K, k = 1,2, . . . ,K).
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By substituting Eqs. (50) and (51) into Eq. (49) we obtain
P ¼ 1

2
cT½F �c� cTf ð54Þ
where the kth element of the c and f vectors are
ck ¼ Ck fk ¼
Z
#/krk dg k ¼ 1; . . . ;K ð55Þ
and the ik element of matrix [F] is
F ik ¼
XK

k¼1

Z bk=2

�bk=2

ða11Þk
l2

p2

o/k

og
o/i

og
þ ða66Þk/k/i

� �
dg ð56Þ
According to the principle of stationary potential energy, we have
P ¼ 1

2
cT½F �c� cTf ¼ stationary! ð57Þ
The necessary condition for Eq. (57) is op/oCk = 0, which results in the following equation:
½F �c� f ¼ 0 ð58Þ

The unknown constants can be calculated as
c ¼ ½F ��1
f ð59Þ
When the constants are known, q can be calculated by Eq. (50). From q the torque load can be calculated
by Eq. (46).
5. Beam theory

All the six assumptions of Section 1 are valid, the last one is reiterated here.
The axial strain is (Eq. (9))
�o
x ¼

du
dx
� y

dvy

dx
� z

dvz

dx
� x

d#B

dx
ð60Þ
where vy, vz and #B are given by Eq. (10).

5.1. Governing equations in pure torsion

For convenience we separate the shear flow q as
q ¼ q0 þ qx ð61Þ

where q0 is uniform around the circumference (Fig. 10).

These shear flows result in the following torques:
bT sv ¼
I

q0r dg bT x ¼
I

qxr dg ð62Þ
and the total torque is
bT ¼ bT sv þ bT x ð63Þ



Fig. 10. Shear flow q = q0 + qx.

A. Pluzsik, L.P. Kollár / International Journal of Solids and Structures 43 (2006) 5307–5336 5319
The shear flow results in a rate of twist
# ¼
H

qa66 dg
2A

ð64Þ
where A is the enclosed area.
We separate q (Eq. (61)) such that qx does not cause a twist. Hence we have
H

qxa66 dg

2A
¼ 0 ð65Þ
and
# ¼
H

q0a66 dg
2A

¼ q0

H
a66 dg
2A

ð66Þ
We define the bimoment bM �
x such that the first derivative of bM �

x is equal to bT x. (See Eq. (11) for open sec-
tion beams.)
bT x ¼
d bM �

x

dx
ð67Þ
Note, however, that Vlasov�s definition for the bimoment, bM x ¼
H

N nxdg; is different, Eqs. (48), (67) and
(62) give
bM �
x ¼

R H
qxr dgdx

�
H R

dq
dg dxxdg

bM x ð68Þ
With Eq. (67) we obtain the same equilibrium equations as for open section beams
� d

dx
� d

dx

�1
d

dx

2664
3775

bT svbT xbM �
x

8>><>>:
9>>=>>; ¼

t

0

( )
ð69Þ
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Similarly, as for open section beams, we assume that the rate of twist consists of two terms, # = #S + #B

(Eq. (6)) and write the strain–displacement relationship as (Eq. (18))
#

#S

C

8<:
9=; ¼

d

dx
d

dx
�1

� d

dx

2666664

3777775
w
#B


 �
ð70Þ
and assume that these generalized strains are related to the internal forces by
bT svbT xbM �
x

8<:
9=; ¼

bGI t

Sxx cEI x

24 35 #

#S

C

8<:
9=; ð71Þ
where bGI t, Sxx and cEI x are yet unknown stiffnesses. In the following section we will determine expressions
for the stiffnesses to obtain an acceptable description for the beam with the above governing equations.

5.2. Replacement stiffnesses in pure torsion

To determine the stiffnesses bGI t, Sxx and cEI x of the beam, we will make use of the derived solution for
the case of beams subjected to a sinusoidal load (Sections 4.1, 4.2, Fig. 8).

The strain energy of the beam is
U ¼ 1

2

Z l

0

Z
a11N n|fflffl{zfflffl}

�o
n

N n þ a66q|{z}
c0
ng

q

0BB@
1CCAdg

0BB@
1CCAdx ð72Þ
We introduced the internal forces, generalized strains and the stiffnesses of the beam in the previous section.
By using these definitions the strain energy can be written as
U ¼ 1

2

Z l

0

bT sv#þ bT x#s þ bM �
xC

� 	
dx ¼ 1

2

Z l

0

bT 2

svbGI t

þ
bT 2

x

Sxx
þ
bM �2

xcEI x

 !
dx ð73Þ
We recall (Eq. (38)) that for a sinusoidal load q and # are trigonometrical functions, and hence, bT sv; bT x

and bM �
x are also trigonometrical functions and the integration with respect to x can be performed. From

Eqs. (72) and (73), together with Eq. (48) we obtain
U ¼ 1

2

l
p

I
a11

l2

p2

oq
og

� �2

þ a66q2 dg ð74Þ
and
U ¼ 1

2

l
p

bT 2

svbGI t

þ
bT 2

x

Sxx
þ
bM �2

xcEI x

 !
ð75Þ
We introduce q = q0 + qx (Eq. (61)) into Eq. (74) and obtain
U ¼ 1

2

l
p

Z
a66q2

0 dgþ
Z

a66q2
x dgþ l2

p2

Z
a11

oq
og

� �2

dgþ 2q0

Z
qxa66 dg|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

0

0BB@
1CCA ð76Þ
As a consequence of Eq. (65) the last term in Eq. (76) is zero.
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Introducing Eqs. (62) and (67) into Eq. (75) we obtain
U ¼ 1

2

l
p
ð
H

q0r dsÞ2bGI t

þ ð
H

qxr dsÞ2

Sxx
þ
ðlp
H

qxr dsÞ2cEI x

 !
ð77Þ
By comparing Eqs. (76) and (77) we have
bGI t ¼
ð
H

q0r dsÞ2R
a66q2

0 dg
ð78Þ

Sxx ¼
ð
H

qxr dsÞ2R
a66q2

x dg
ð79Þ

cEI x ¼
ð
H

qxr dsÞ2R
a11ðo

2q
og2 Þ2 dg

ð80Þ
q0 is uniform around the circumference, hence Eq. (78) becomes
bGI t ¼
ð
H

r dsÞ2R
a66 dg

¼ 4A2R
a66 dg

ð81Þ
To determine Sxx and cEI x the distribution of qx must be known. In Sections 4.1 and 4.2 we determined qx,
and obtained that qx depends on the length l, and as a consequence, Sxx and cEI x also depend on l. To
derive stiffnesses which are independent of the length l we will assume that l/bk� 1, where bk is the width
of the kth wall segment.

To calculate the stiffnesses we may either use the ‘‘exact’’ solution (see Eq. (41)) or the approximate solu-
tion obtained via the Ritz method (see Eq. (50)). To obtain simpler results the approximate solution will be
used. First the expressions for a doubly symmetrical box beam is derived then a general cross-section under-
going pure torsion will be considered.

5.2.1. Doubly symmetrical, box section beams

We consider a simply supported, doubly symmetrical box beam seen in Fig. 11.bGI t is given by Eq. (81), which results in
bGI t ¼
2b2

1b2
2

X
ð82Þ
Fig. 11. Box-section beam.
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where
X ¼ ða66Þ1b1 þ ða66Þ2b2 ð83Þ
The beam is subjected to a torque load t ¼ et sin px=l (Fig. 8). Under the applied load the beam undergoes a
rate of twist # ¼ e# cos px=l, where e# is a yet unknown constant.

The box beam has four wall segments, hence the number of functions in the Ritz method is
2K = 2 · 4 = 8, and eq is
eq ¼X8

k¼1

Ck/k ð84Þ
Because of symmetry
C1 ¼ C2 ¼ C3 ¼ C4 C5 ¼ C7 C6 ¼ C8 ð85Þ
Hence we use the shape functions given in Fig. 12.
With these simplifications Eq. (59) becomes
c ¼ ½F ��1
f ð86Þ
where
c ¼

C1

C5

C6

8>>><>>>:
9>>>=>>>; f ¼

A=2

A=3

A=3

8>>><>>>:
9>>>=>>>; ð87Þ

½F � ¼ l2

p2

p2

l2

ða66Þ1b1

2
þ p2

l2

ða66Þ2b2

2

p2

l2

ða66Þ1b1

3

p2

l2

ða66Þ2b2

3

p2

l2

ða66Þ1b1

3

16ða11Þ1
3b1

þ p2

l2

8ða66Þ1b1

15

p2

l2

ða66Þ2b2

3

16ða11Þ2
3b2

þ p2

l2

8ða66Þ2b2

15

26666666664

37777777775
ð88Þ
Fig. 12. Functions /k for a doubly symmetrical box beam.
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Solution of Eq. (86) results in
C1 ¼ e# p2

l2
A2

1

2
�

1
3

ða66Þ1b1

3
A p2

l2

A 16ða11Þ1
3b1
þ A p2

l2

8ða66Þ1b1

15

�
1
3

ða66Þ2b2

3
A p2

l2

A 16ða11Þ2
3b2
þ A p2

l2

8ða66Þ2b2

15

ða66Þ1b1

2
A

p2

l2
þ ða66Þ2b2

2
A

p2

l2
� 2

ða66Þ1b1

3
A p2

l2

� 	2

A 16ða11Þ1
3b2
þ A p2

l2

8ða66Þ1b1

15

� 2

ða66Þ2b2

3
A p2

l2

� 	2

A 16ða11Þ2
3b2
þ A p2

l2

8ða66Þ21b2

15

C5 ¼ e# p2

l2

A2

3
� 2
ða66Þ1b1

3
A

p2

l2
C1

A
16ða11Þ1

3b1

þ A
p2

l2

8ða66Þ1b1

15

C6 ¼ e# p2

l2

A2

3
� 2
ða66Þ2b2

3
A

p2

l2
C1

A
16ða11Þ2

3b2

þ A
p2

l2

8ða66Þ2b2

15

ð89Þ
The Taylor series expression of these expressions with respect to
ffiffiffi
A
p

p=l are as follows:
C1 ¼ e# A
X
þ p2

l2

2AY

3X 2
� ða66Þ1b1

16ða11Þ1
b1

þ ða66Þ2b2

16ða11Þ2
b2

0BB@
1CCAþ p4

l4
� � �|fflfflfflffl{zfflfflfflffl}

neglected

8>><>>:
9>>=>>;

C5 ¼ e# p2

l2

AY
16ða11Þ1

b1

X
þ p4

l4
� � �|fflfflfflffl{zfflfflfflffl}

neglected

8>><>>:
9>>=>>;

C6 ¼ e# � p2

l2

AY
16ða11Þ2

b2

X
þ p4

l4
� � �|fflfflfflffl{zfflfflfflffl}

neglected

8>><>>:
9>>=>>;

ð90Þ
where
Y ¼ ða66Þ2b2 � ða66Þ1b1 ð91Þ

and X is defined in Eq. (83). In these expressions we neglect the terms containing ð

ffiffiffi
A
p

p=lÞi, when i P 4.
The rate of twist can be calculated by Eq. (66), which is
# ¼ e# cos
px
l
¼ eq0 cos

px
l

H
a66 dg

2A
ð92Þ
Eq. (92) gives the uniform shear flow
eq0 ¼ e# 2AH
a66 dg

ð93Þ
For the box beam » a66 dg = 2(a66)1b1 + 2(a66)2b2 = 2X and hence
eq0 ¼ e# A
X

ð94Þ
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The shear flow qx is calculated as
qx ¼ q� q0 ð95Þ

Eqs. (84) and (95) give
eqx ¼ ðC1 � eq0Þ/1 þ C5/2 þ C6/3 ð96Þ

By introducing Eq. (96) into (79) and (80) we obtain
Sxx ¼
A2

2X 2

ðn2 � n1Þ2

n1n2ð1þ jÞ
cEI x ¼

A2

24
ðn2 � n1Þ2Z ð97Þ
where
Z ¼ b1

ða11Þ1
þ b2

ða11Þ2

n1 ¼
b1ða66Þ1

X
n2 ¼ 1� n1 ð98Þ

j ¼ n1g2
1 þ n2g2

2

5n1n2ðg1 þ g2Þ
2

ð99Þ

g1 ¼
b1=ða11Þ1

Z
g2 ¼ 1� g1 ð100Þ
(X is given by Eq. (83).)

5.2.2. General cross-section beams

We consider a thin-walled closed section beam consisting of K plane wall segments (Fig. 3). The torsional
stiffness cGI t is given by Eq. (81) which results in
cGI t ¼
4A2PK

k¼1ða66Þkbk

ð101Þ
where bk and (a66)k are the width and the shear compliance of the kth wall segment, and A is the enclosed
area.

The beam is subjected to a torque load t ¼ et sin px=l and the beam undergoes a rate of twist
# ¼ e# cos px=l. The shear flow of the beam is approximated by (see Eq. (50))
eq ¼X2K

k¼1

Ck/k ð102Þ
where /k is illustrated in Fig. 9, and Ck are yet unknown constants. The equation to determine these con-
stants were derived in Section 4.2, and is reiterated below
½F �c ¼ f ð103Þ

where
c ¼

C1

C2

..

.

C2K

8>>>><>>>>:

9>>>>=>>>>; f ¼

f1

f2

..

.

f2K

8>>>><>>>>:

9>>>>=>>>>; ð104Þ
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and [F] is
Table
Elemen
½F � ¼ l2

p2

½A1�
½A2�


 �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

½A�

þ
½B1� ½B2�
½B2�T ½B3�


 �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

½B�

ð105Þ
where the elements of vector f and matrices [A1], [A2], [B1], [B2] and [B3] are given in Table 2.
Solution of Eq. (103) is assumed to be in the form of
c ¼ ec þ p2

l2
eec þ p4

l4

eeec þ � � � ð106Þ
By introducing Eqs. (105) and (106) into Eq. (103) we obtain
l2

p2
½A� þ ½B�

� � ec þ p2

l2
eec þ p4

l4

eeec þ � � �� �
¼ f ð107Þ
which gives
½A�ec þ p2

l2
ð½B�ec þ ½A�eecÞþ p4

l4
� � �|fflfflfflffl{zfflfflfflffl}

neglected

¼ p2

l2
f ð108Þ
In this equation we neglect the terms pi/li when i P 4. In order to obtain the ‘‘best’’ solution we make equal
the multipliers of pi/li in the two sides of Eq. (108), and write
½A�ec ¼ 0 ð109Þ
½B�ec þ ½A�eec ¼ f ð110Þ
Matrix [A] is singular. The non-trivial solution of (Eq. (109)) is
ec1 ¼ ec2 ¼ � � � ¼ ecK ¼ const ecKþ1 ¼ ecKþ2 ¼ � � � ¼ ec2K ¼ 0 ð111Þ

The choice of the constant is not unambiguous. Here we propose the constant value to be equal to the shear
flow resulting in an infinitely long beam. Hence we write (Eq. (93)):
2
ts of matrices [A1], [A2], [B1], [B2], [B3] and vector f

[A1]

ða11Þj
bj
þ ða11Þi

bi
i ¼ j

�ða11Þi
bi

when i ¼ jþ 1

�
ða11Þj

bj
i ¼ j� 1

0 else

8>>>>>>>><>>>>>>>>:
[B1]

ða66Þibi

3
þ
ða66Þjbj

3
i ¼ j

ða66Þibi

6
when i ¼ jþ 1

ða66Þjbj

6
i ¼ j� 1

0 else

8>>>>>>><>>>>>>>:
[A2]

16ða11Þi
3bi

when i ¼ j

0 else

8<: [B2]

ða66Þibi

3
i ¼ j

ða66Þjbj

3
when i ¼ j� 1

0 else

8>>><>>>:

f

bkrk

2
when k 6 K

2bkrk
3 k P K

8<: [B3]
8ða66Þibi

15
when i ¼ j

0 else

(
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ec1 ¼ ec2 ¼ � � � ¼ ecK ¼ eq0 ¼ e# 2APK
k¼1ða66Þkbk

ð112Þ
Eq. (110) gives 2K equations to determine eec .
½A�eec ¼ f � ½B�ec ð113Þ

[A] is singular and, consequently, the elements of eec cannot be determined unambiguously from Eq. (113)
only. However we have an additional condition which is discussed below.

We may observe (see Eqs. (111) and (112)) that
eq0 ¼
X2K

k¼1

eCk/k ¼
XK

k¼1

eCk/k ð114Þ
and, consequently (see Eqs. (61), (101) and (106))
eqx ¼
p2

l2

X2K

k¼1

eeC k/k ð115Þ
We now make use of Eq. (65), which can be given in the following form:
XK

k¼1

eeC k
ða66Þkbk

2
þ
ða66Þkþ1bkþ1

2

� �
þ
XK

k¼1

eeC kþK
2ða66Þkbk

3
¼ 0 ð116Þ
The elements of
eeC k are determined from the following 2K equations: The 2nd through 2Kth equations of

Eq. (113)
X2K

j¼1

Ajk
eeC k ¼ fk � eq0

XK

j¼1

Bjk k ¼ 2; 3; . . . ; 2K ð117Þ
and from Eq. (116). We substitute
eeC k into Eq. (115) and then into Eqs. (79) and (80) which results in
Sxx ¼

PK
k¼1rkbk

eeC k�1þ
eeC k

2
þ 2

3

eeC Kþk

 ! !2

PK
k¼1ða66Þkbk

eeC 2

k�1þ
eeC 2

kþ
eeC k�1

eeC k

3
þ 8

15

eeC 2

Kþk þ 2
3

eeC Kþk
eeC k�1 þ eeC k

� 	0@ 1A

cEI x ¼

PK
k¼1rkbk

eeC k�1þ
eeC k

2
þ 2

3

eeC Kþk

 ! !2

PK
k¼1

ða11Þk
bk

� eeC k�1 þ eeC k

� 	2

þ 16
3

eeC 2

Kþk

� � ð118Þ
Note that we derived explicit expressions for cGI t, Sxx and cEI x which are independent of the beam�s
length.

5.3. Bending–torsion coupling—unsymmetrical beams

In the previous section we considered beams undergoing pure torsion.
As a rule beams undergo lateral and torsional deformations simultaneously. By combining Eq. (16) and

Eq. (71) we write
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cy

cz

#

#s

8>>>>><>>>>>:

9>>>>>=>>>>>;
¼

syy syz sy0 syx

syz szz sz0 szx

sy0 sz0 s00 s0x

syx szx sx0 sxx

2666664

3777775
bV ybV zbT svbT x

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð119Þ
where sij are the shear compliances. To determine the shear compliances we write the shear flow as
q ¼ qy þ qz þ qT ð120Þ
where qy, qz, qT are the shear flows from the shear forces bV y and bV z and from the torque bT , respectively.
The shear flow from the torque is separated as (Eq. (61)):
qT ¼ q0 þ qx ð121Þ
Hence we have
bV y ¼
Z

qy dg

bV z ¼
Z

qz dg

bT sv ¼
Z

rq0 dg

bT x ¼
Z

rqx dg

ð122Þ
The compliances are determined similarly as for pure torsion. The strain energy of the beam is
U ¼ UN þ Uq ¼
1

2

Z
a11

l2

p2

o2q
og2

� �2

dgþ 1

2

Z
a66q2 dg ð123Þ
With the internal forces in Eq. (119) we write
Uq ¼
1

2
bV 2

y syy þ
1

2
bV 2

z szz þ
1

2
bT 2

svs00 þ
1

2
bT 2

xsxx þ bV y
bV zsyz þ bV y

bT svsy0 þ bV z
bT svsz0 þ bV y

bT xsyx

þ bV z
bT xszx þ bT sv

bT xsx0 ð124Þ
By introducing Eqs. (120 and 121) into the second part of Eq. (123) we have
Uq ¼
1

2

Z
a66 q2

y þ q2
z þ q2

0 þ q2
x þ 2qyqz þ 2qyq0 þ 2qyqx þ 2qzq0 þ 2qzqx þ 2q0qx

� 	
dg ð125Þ
By comparing Eq. (124) and (125) we obtain
sij ¼
R

a66qiqj dgR
qiðrÞdg

R
qjðrÞdg

i; j ¼ y; z; 0;w ð126Þ
The shear flows q0 and qx can be calculated according to the previous section, while qy and qz according to
classical textbooks.

Eq. (65) results in
sx0 ¼ 0 ð127Þ
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6. Verification

In this section we demonstrate the utility of the presented theory through numerical examples.
First we consider a simply supported beam subjected to a sinusoidal load (Fig. 8).
The cross-section of the beam is shown in Fig. 13a. The material properties are given in Table 3. The

thickness of the wall is 2 mm.
For simplicity the dimensions are omitted below (the forces are given in N and the distances in mm).

With these properties the value of a11 and a66 for the flanges (subscript 1) and for the webs (subscript 2) are
Table
Mater

T300/9
ða11Þ1 ¼ 3:0799� 10�5 ða66Þ1 ¼ 1:432� 10�5

ða11Þ2 ¼ 3:3784� 10�6 ða66Þ2 ¼ 1:0989� 10�4
ð128Þ
The stiffnesses of the beam are calculated by Eqs. (82), (97), (83) and (91). With b1 = 50 mm and
b2 = 70 mm we obtain
A ¼ 3500 X ¼ 0:0084083 Y ¼ �0:0069763cGI t ¼ 2:9138� 109 Sxx ¼ 2:1308� 109 cEI x ¼ 7:8507� 1012
ð129Þ
The twist is given in Appendix A (Eq. (A.11)) for k = 1
w ¼
Xew sin

px
lew ¼ l2

p2 cGI t þ Sxx 1� Sxx

SxxþbEI x
p2

l2

 ! !et ð130Þ
For l = 150 mm and t ¼ et sin px=l; at the midspan, we have
ew ¼ 5:3893� 10�7et ð131Þ
Fig. 13. The cross-sections in the numerical examples.

3
ial properties of a graphite epoxy ply

E1 [MPa] E2 [MPa] G12 [MPa] m12

34 148000 9650 4550 0.3
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We calculated the twist of the middle section also by solving the differential equation system of the walls
(Section 4.1, ‘‘accurate solution’’), and we obtained
Fig.
ew ¼ 5:3352� 10�7et ð132Þ

The difference is only �1.01%. Note that by neglecting Sxx we obtain ew ¼ 3:5870� 10�7et and by using
Kristek�s theory Kristek (1979) ew ¼ 4:4204� 10�7et. The inaccuracy of these values are 32.77% and
17.15%, respectively, which are not acceptable.

In Fig. 14 we show the results for the same beam as a function of the beam length.
We assumed that the maximum rate of twist on the beam is unity ð# ¼ cos px=lÞ and we calculated

the torque ðbT ¼ eT cos px=lÞ which results in #. In this figure we included the results for the case when onlycGI t is considered and when only cGI t and cEI x are taken into account, however Sxx is assumed to be infinity.
The results of Kristek�s theory are also presented. The shorter the beam the more important the effect
of Sxx.

For very short beams even the presented method becomes inaccurate. (The reason is that the function of
q differs very much from a second order parabola (see Eq. (84)) for very short beams. Because of the same
reason, Vlasov�s theory is also inaccurate for short beams.) In these cases we should model the beam as a
shell structure. The question arises at which beam length may the above theory be used? By considering
Eqs. (89) and (90) we can see that the term p2

l2

8ða66Þk bk

15
was neglected with respect to 16ða11Þk

3bk
for each wall seg-

ment. Hence we write
16ða11Þk
3bk

� p2

l2

8ða66Þkbk

15
ð133Þ
which yields
l2

b2
k

ða11Þk
ða66Þk

� 1 ð134Þ
We made several numerical comparisons; on the basis of these we found that our beam theory can be used
when
d ¼ l
K

XK

k¼1

1

bk

ffiffiffiffiffiffiffiffiffiffiffiffi
ða11Þk
ða66Þk

s
P 1–3 ð135Þ
where K is the number of the wall segments. (Note that for isotropic beams the above condition gives
l=K

PK
k¼1bk > 2–5.)

For the beam shown in Fig. 13a and l = 150, d = 2.3877. In Fig. 14 the results, as a function of d, are also
presented (see top axis).
14. Comparison of the ‘‘accurate’’ solution with the results of the different theories (the cross-section is given in Fig. 13a).
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We also considered the cross-section shown in Fig. 13b. The compliances of the walls are
Fig.
ða11Þ1 ¼ 6:1000� 10�6 ða66Þ1 ¼ 2:3498� 10�5 ð136Þ
ða11Þ2 ¼ 3:3784� 10�6 ða66Þ2 ¼ 1:0989� 10�4 ð137Þ
The results are shown in Fig. 15. In this figure we included our beam solution, the ‘‘accurate’’ solution, and
Kristek�s modified solution. It is seen that for beams, when d P 1, the presented beam model is acceptable.

Note that for the case when the layup and the thickness of the wall segments are identical the simple
theory, considering cGI t only, is applicable.

For further verification we considered beams with artificial materials, where the compliances differ sig-
nificantly from each other. The values of a11 and a66 are shown in Fig. 16. The results of our calculations
are shown in Figs. 17 and 18.

Then we consider a cantilever beam subjected to a concentrated torque at the end T = 1280 (Fig. 19).
The length of the beam l is 1000 mm. The cross-section is shown in Fig. 13c.

The compliances of the walls are
ða11Þ1 ¼ 1:6892� 10�6 ða66Þ1 ¼ 5:4945� 10�5 ð138Þ
ða11Þ2 ¼ 6:7568� 10�6 ða66Þ2 ¼ 2:1978� 10�4 ð139Þ
15. Comparison of the ‘‘accurate’’ solution with the results of the different theories (the cross-section is given in Fig. 13b).

Fig. 16. Cross-sections with artificial materials.



Fig. 18. Comparison of the ‘‘accurate’’ solution with the results of the different theories (the cross-section is given in Fig. 16b).

Fig. 19. Cantilever beam subjected to a torque at the end.

Fig. 17. Comparison of the ‘‘accurate’’ solution with the results of the different theories (the cross-section is given in Fig. 16a).
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The stiffnesses of the beam cGI t, Sxx and cEI x are given by Eqs. (82) and (97):
cGI t ¼ 1:3512� 109 Sxx ¼ 1:0479� 108 cEI x ¼ 9:9078� 1012 ð140Þ

The function of the twist is given by Eq. (B.7) in Appendix B:
w ¼ C1 þ C2xþ C3ekðx�LÞ þ C4e�kx ð141Þ

where k = 0.0077, C1 = �0.5361 · 10�4, C2 = 0.0095 · 10�4, C3 = 0 and C4 = 0.5361 · 10�4.

The rate of twist (i.e. the first derivative of the twist) is
# ¼ C2 þ C3kekðx�LÞ � C4ke�kx ¼ 10�4 � ð0:0095� 0:0041� e�0:0077xÞ ð142Þ

The rate of twist was also calculated by the ANSYS FE program. The results are compared to each other in
Fig. 20. It can be seen that the analytical and numerical calculations agree well.



Fig. 20. Rate of twist of a cantilever beam subjected to a torque at the end (the cross-section is given in Fig. 16c).
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7. Conclusions

We gave the governing differential equation system of thin-walled, closed section, orthotropic beams
subjected to a torque load. We have solved the problem for sinusoidal load. Solution only for isotropic case
can be found in the literature (Vlasov, 1961), which gives inaccurate results when the stiffnesses of the wall
segments differ from each other significantly.

We presented a beam theory for thin-walled, closed section, orthotropic beams taking the restrained
warping and the shear deformation into account. They play an important role when the stiffnesses of
the walls (thickness and/or the layup) are significantly different from each other.

We gave numerical examples to demonstrate the accuracy of our beam model. The restrained warping
and the shear deformation may affect the torsional stiffness of the beam, and consequently, the buckling
load and the vibration characteristics. The expressions presented in Kollár and Springer (2003) and in Sap-
kás and Kollár (2002) for the buckling load and in Kollár (2001) for the period of vibration of open section

beams can be applied directly for closed section beams: in the presented expressions the stiffnesses cGI t, Sxx,cEI x derived in this paper must be used.
We must note, however that in most of the practical cases the torsional stiffnesses of closed section

beams are relatively high and the presented effect is significant only for relatively short beams. For these
cases either the presented model must be used or the beam must be modeled by shell (or 3D) finite elements.
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Appendix A. Simply supported beam

We consider a simply supported beam with the length l subjected to a torque with arbitrary distribution.
The torque load is represented by its Fourier series expansion:
t ¼
Xetk sin

pkx
l

ðA:1Þ
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In the following we determine the rate of twist for the kth element of the load: etk sin pkx=l.
The governing equations are given by Eqs. (69)–(71) which—for pure torsion—are reiterated below
#

#S
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8>><>>:
9>>=>>; ¼

d

dx

d

dx
�1

� d

dx

266666664

377777775
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� d
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� d
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dx
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3775

bT svbT xbM �
x

8>><>>:
9>>=>>; ¼

etk sin
pkx

l

0
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9=; ðA:4Þ
The boundary conditions are
wð0Þ ¼ 0
d2w
dx2
ð0Þ ¼ 0

wðlÞ ¼ 0
d2w
dx2
ðlÞ ¼ 0 ðA:5Þ
The rate of twist w, and #B are assumed in the form
wk ¼ ewk sin
pkx

l
ðA:6Þ

#Bk ¼ e#Bk cos
pkx

l
ðA:7Þ
which satisfy the boundary conditions (Eq. (A.5)).
By introducing wk and #Bk into Eqs. (A.2)–(A.4) we obtain
#

#S

C

8>><>>:
9>>=>>; ¼

d

dx

d

dx
�1

� d

dx

266666664

377777775
ewk sin
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l
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� d
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� d

dx
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d

dx
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From these equations, after algebraic manipulation, we obtain
w ¼
Xewk sin

pkx
l

ðA:11Þ

ewk ¼
l2

p2k2 cGI t þ Sxx 1� Sxx

Sxx þcEI x
p2k2

l2

0BB@
1CCA

0BB@
1CCA
etk ðA:12Þ
The rate of twist # is the derivative of w, which is
# ¼
X e#k cos

pkx
l

ðA:13Þ

e#k ¼
l

pk cGI t þ Sxx 1� Sxx

Sxx þcEI x
p2k2

l2

0BB@
1CCA

0BB@
1CCA
etk ðA:14Þ
Appendix B. Cantilever beam subjected to a concentrated torque at the end

We consider a cantilever beam subjected to a torque bT at the end (Fig. 19).
The governing equations are given by Eqs. (69)–(71), with t = 0.
Substituting Eq. (70) into Eq. (71) and then into Eq. (69) we obtain
cGI t þ Sxx

� 	 d2

dx2
�Sxx

d

dx

�Sxx
d

dx
Sxx �cEI x

d2

dx2

26664
37775 w

#B

( )
¼

0

0

( )
ðB:1Þ
The boundary conditions are
wð0Þ ¼ 0 #Bð0Þ ¼ 0 ðB:2ÞbM �
xðlÞ ¼ 0 bT ðlÞ ¼ bT
Using Eqs. (70), (71) and (3) we obtain
wð0Þ ¼ 0 #Bð0Þ ¼ 0

d#B

dx
ðlÞ ¼ 0 cGI t

dw
dx
ðlÞ þ Sxx

dw
dx
ðlÞ � #BðlÞ

� �
¼ bT ðB:3Þ
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We assume the solution of Eq. (B.1) as follows:
w

#B


 �
¼

w0

#B0


 �
ekx ðB:4Þ
Substituting Eq. (B.4) into Eq. (B.1), and omitting ekx, we have
cGI t þ Sxx

� 	
k2 �Sxxk

�Sxxk Sxx �cEI xk2

24 35 w0

#B0


 �
¼

0

0


 �
ðB:5Þ
We obtain a non-trivial solution of Eq. (B.5) if the determinant of the matrix on the left hand side is equal
to zero. This condition results in four ks:
k1 ¼ k2 ¼ 0 k3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficGI t

cEI x 1þ
cGI t

Sxx

 !
vuuuuut ¼ k k4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficGI t

cEI x 1þ
cGI t

Sxx

 !
vuuuuut ¼ �k ðB:6Þ
We obtain the relationship of w0 and #B0 from the second row of Eq. (B.5)
#B0 ¼ w0

Sxxk

Sxx �cEI xk2
Because of the two zero values of k the complete solution of Eq. (B.1) is (Kreyszig, 1993)
w ¼ C1 þ C2xþ C3ekðx�LÞ þ C4e�kx ðB:7Þ

and the expression of #B is
#B ¼ C2 þ C3

Sxxk

Sxx �cEI xk2
ekðx�LÞ � C4

Sxxk

Sxx �cEI xk2
e�kx ðB:8Þ
Substituting these into the expressions of the boundary conditions (Eq. (B.3)) we obtain an algebraic equa-
tion system which yields the yet unknown constants Ci (i = 1,2, . . . , 4).

When Sxx is large ðSxx > 10l2cEI xÞ the results are very close to those given by the expression derived on

the basis of cGI t and cEI x (while Sxx =1) (Megson, 1990).
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