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Abstract

The paper presents a theory for thin-walled, closed section, orthotropic beams which takes into account the shear
deformation in restrained warping induced torque. In the derivation we developed the analytical (“‘exact”) solution
of simply supported beams subjected to a sinusoidal load. The replacement stiffnesses which are independent of the
length of the beam were determined from the exact solution by taking its Taylor series expansion with respect to the
inverse of the length of the beam. The effect of restrained warping and shear deformation was investigated through
numerical examples.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Fiber reinforced plastic (composite), thin-walled beams are widely used in the aerospace industry and are
increasingly applied in the infrastructure. Thin-walled beams are often made with closed cross-sections
because of their high torsional stiffness.

Classical beam theories, which neglect bending—torsion coupling, transverse shear deformation and
torsional warping stiffness often fail to predict the behavior of closed section, composite beams. To avoid
the undesirable bending—torsion coupling, beams can be manufactured such that their layup is orthotropic
(Kollar and Springer, 2003), (however not necessarily symmetrical).

In this paper a new theory is presented for orthotropic, closed section thin-walled beams taking trans-
verse shear and restrained warping into account. There are composite beam theories (Massa and Barbero,
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1998; Rehfield et al., 1988) which take transverse shear and restrained warping into account, however they
neglect the effect of shear deformation on restrained warping which may overestimate the warping stiffness.
This effect is explained for pure torsion below:

Classical beam theories, derived by Vlasov (1961) and also included in classical textbooks (Megson,

o~

1990), calculates the bimoment () and the Saint Venant torque (7,) as
M,=EI,'  Ty=GId (1)

where EI » 18 the warping stiffness, 61[ is the torsional stiffness, ¢ is the rate of twist (which is the first deriv-
ative of the rotation of the cross-section ¥ = dy//dx), and

r=-+ (2)

where x is the axial coordinate. The torque (?) is the sum of the Saint Venant torque (?sv) and the re-

~

strained warping induced torque (7',,)
T=Ty+T, (3)

where the latter is calculated as

~ dM
Tw =-—" 4
= )

Egs. (1)—(4) give the well-known equation:

& = o= dW

T - G]ﬂg—EI(,,@ (5)
In the theory, presented in this paper, we assume that the rate of twist () consists of two parts

¥ =g + Vs (6)

where subscripts “B”” and “S” refer to the bending and shear deformations. (Note the similarity with the
Thimoshenko beam theory for the inplane deformations of beams, where the first derivative of the displace-
ment consists of two parts: dv/dx = y + 7, where the first term is the rotation of the cross-section and the
second is the transverse shear strain.) T., is calculated from dg as

/Tcu = Sww’ﬂs (7)

where S, is the rotational shear stiffness. Eqgs. (1), (3) and (4) are valid, however Eq. (2) is replaced
by

dvy
- (3)

A theory, where the effect of shear deformation on restrained warping is taken into account (and the basic
idea of which for pure torsion is explained above) was derived in Kollar (2001) for open section composite
beams. This paper can be considered as the generalization of Kollar (2001) for closed section beams. Note
that Roberts and Al-Ubaidi (2001) and Wu and Sun (1992) also proposed the use of Eq. (6). The paper of
Roberts and Ubaidi only shows the importance of the effect but do not provide a complete theory, Wu and
Sun’s solution is rather complex and too tedious for design purposes.

The shear deformation in restrained warping may have a significant effect on short beams, and this effect
is not included in Massa and Barbero (1998) and Rehfield et al. (1988) which is indicated by the empty
boxes in the fifth column of Table 1.

I =
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Table 1
Comparison of composite beam theories
Beam models Not isotropic Not orthotropic Restrained Shear in Arbitrary closed
warping warping cross-section
Massa and Barbero (1998) = *
Mansfield and Sobey (1979) =* Inaccurate for unsym. laminate *
Rehfield et al. (1988) * Inaccurate for unsym. laminate * *
Kollar and Pluzsik (2002) * * *
Urban (1955) * Inaccurate Doubly sym. cross-section
Present * * * *

For thin-walled beams with symmetrical layup the effect of local bending stiffness is negligible, however
for unsymmetrical layups it may have a significant effect, which was shown in Pluzsik and Kollar (2002),
and hence we included the effect of local stiffness in the presented theory.

We must give credit to the work of Urban (1955), who developed a theory for closed section, isotropic
beams with uniform cross-section. Urban took into account the shear deformation in restrained warping,
however assumed a uniform shear flow which is not a reasonable assumption when the effect of restrained
warping is significant. His theory was extended to non-uniform cross-sections (non-prismatic beams) by
Kristek (1979). Both Urban and Kiristek restricted their analysis for doubly symmetrical isotropic beams.

Vlasov—the pioneer of thin-walled beam theories—also presented a solution for isotropic, closed section
beams containing of flat walls (Vlasov, 1961). In his solution, in pure torsion, he assumed independent
warping functions for each wall-segment and hence no cross-sectional properties were presented, and hence,
his solution is rather complex.

Below we summarize the governing equations of Kollar (2001) which was developed for open section
composite beams. These equations will be generalized in this paper for closed section beams.

We consider transversely loaded, open section, orthotropic beams consisting of an arbitrary number of
flat wall segments (Fig. 1). The twist has two parts: one from bending (which causes warping) and an other
part from the restrained warping induced shear stress, as indicated by Eq. (6).

1.1. Basic assumptions

(1) The material of the cross-section behaves in a linearly elastic manner.

(2) The effect of the displacements of the axis of the beam is not taken into account in the equilibrium
equations.

(3) The effect of change in geometry of the cross-section is not taken into account in the equilibrium
equations.

(4) The Kirchhoff-Love hypotesis is valid for each plate element.

T

Fig. 1. Loads on a thin-walled beam.
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(5) The normal stresses in the contour directions are small compared to the axial stresses.
(6) The form of the axial strain is

du dy, dyg ddp

=Y — O —— 9

SToe T Tdr “dr ®)
where u is the axial displacement, y, and . are the rotations of the cross-section in the x — y and x — z
planes, Jp is the rate of twist from bending, and w = fg rds is a section property called the sectorial
area. The last term in Eq. (9) represents an additional axial displacement of the cross-section, called
warping, proportional to the rate of twist from bending (Megson, 1990). y,, x- and ¥ can be calcu-
lated as follows:

dv dw dyr
=g~ =g Ue=go—Us (10)
where 7, and y. are the shear strains and v and w are the displacements in the x — y and x — z planes,
respectively, Y is the twist and vg is the rate of twist from shear.

The shear strain is supposed to be constant in the cross-section which is referred to as the first order
shear theory. Couplings between normal and shearing effects are neglected.

1.2. Governing equations

We summarize below the governing equations of open section, orthotropic thin-walled beams (Kollar,
2001), and present the expressions for calculating the shear stiffnesses.
The equilibrium equations in matrix form are as follows:

_ 4
& i
4 7 ,
dx M.
d d || P
dx T |) A" t
d O L 0 (1h
dx Vy O
d v
- _1 z 0
o 7,
= -1
I dx J

where p, and p. are the external loads in the y — x and z — x planes and 7 is the distributed torque (see
Fig. 1). The internal shear forces V V. are defined as

Vv, = /(Ncgﬂ cosa)ds V.= /(N@ sin ot)ds (12)

The internal moments M M and M o, are

~

/ Ney + M:cosa)ds MZZ/(N52+M§SiHOC)dS (13)

i, = [ (14)
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Ney, Ne, M. are the shear force, normal force and bending moment over unit length of the wall (Eq. (23)).
The torque consists of two parts: the Saint Venant torque and the warping induced torque:

/f = /fsv + T{u (15)
The stress—strain relationship is the following:
- (1
M, El,, EI, o
M‘“ ﬁ 1) Pz
~ - r
TSV GI[ (16)
~ 0,
Vy Sy Sz S
. 7,
Vz S yz Szz Sz(/)
~ Yz
T 0} L S yo Szw S oo |
s
where the generalized strains #, pl and I' are
1 dy 1 d dv
o % 1 9% % (17)
Py dx p- dx dx

In the stiffness matrix EI s ﬁzz, El ,- are the bending stiffnesses, El » 18 the warping stiffness, 61[ is the
torsional stiffness and Sj; are the shear stiffnesses.
The strain—displacement relationship is given by

_d
dx
1 d
P, % )
1 d
p. Cdx
v
r — i (18)
9 dx %
d | q
’))} a - /{z
7 d . Up
o, dx
d
£ ~1
L dx ]

It can be seen that the shear deformation in torsion (vJ) is defined analogously to the shear deformation in
bending (y, and y.). We can calculate the bending, torsional and warping stiffnesses in the same way as for
beams made of isotropic material (Massa and Barbero, 1998). Below we will give the calculation of the
shear compliances which are defined as
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)
Fig. 2. Definition of r.
-1
S ) Sy S Se
Syz Szz Sz = S)z Szz Szw ( 19)
Sy Sz Soo Syw Szw Sw(o
According to Kollar (2001) the shear flow consists of three parts
q9=Vyq,+V:q.+Toq, (20)

where ¢,, g- and ¢q,, are the shear flows caused by unit shear loads (IA/y =1, V.= 1) and by a unit torque
(? = 7",0 = 1), respectively. The shear flows ¢, ¢. and ¢,, can be calculated according to the classical anal-
ysis of thin-walled beams (Megson, 1990). The expressions of s, S--, Sww» Syz Sye and s, are as follows
(Kollar, 2001):

Sy = / oc66q§ ds S, = / oc66qf ds Soww = / 0(66q(20 ds (21)

8y = / %66q,9-ds Sy = / %64,q0,ds S0 = / %669,9., ds

where o 1s the shear compliance of the wall (see Eq. (23)) (Fig. 2).

2. Problem statement

We consider thin-walled closed section prismatic beams. The beam consists of flat segments (Fig. 3) des-
ignated by the subscript k (k =1,2,..., K, where K is the total number of the wall segments). The cross-sec-
tion may be symmetrical or unsymmetrical and the layup of the wall is orthotropic. The beam may be
subjected to distributed loads (shown in Fig. 1) or to concentrated loads. We wish to determine the dis-
placements of the beam.

Fig. 3. Cross-section of the closed section, thin-walled beam.



A. Pluzsik, L.P. Kollar | International Journal of Solids and Structures 43 (2006) 5307-5336 5313
3. Governing equations

We apply the first five assumptions given in Section 1. The sixth assumption will be used only in Section
5. We employ the following coordinate systems (Fig. 4).

For the beam we use the x—y—z coordinate system with the origin at the centroid. For the kth segment we
employ the &—n;—(; coordinate system with the origin at the center of the reference plane of the kth seg-
ment. ¢ is parallel to the x coordinate, 7 is along the circumference of the wall, and { is perpendicular to the
circumference.

The axial displacements of an arbitrary point, s of the cross-section (Fig. 5) is given by Kollar and
Springer (2003)

u(s) = — / rdyd + / ygndr] (22)
0 0

where 7 is the circumferential coordinate, r is given in Fig. 2, ¢ is the rate of twist and ygn is the shear strain.
For an orthotropic wall the stress—strain relationship is given as (Kollar and Springer, 2003)

Eg _OCII 012 0 ﬁ]l /312 0 7 Né

EZ %12 %22 0 ﬁ21 ﬁ22 0 Nﬂ

ng — 0 0 %66 0 0 ﬁéé chﬂ (23)
K¢ Bu B O Su o O M;

Ky B B 0 1 0n O M,

Key & L 0 0 ﬁéé 0 0 566 di Mcfﬂ &

where the calculation of the elements of the compliance matrix (o;;, 8, 6;;) are given by Kollar and Springer
(2003), €2, €, ygq are the strains of the reference surface of the wall, k¢, x,, k¢, are the curvatures of the wall,
N¢, Ny, N¢, are the in-plane forces (per unit length) and M, M,, M., are the moments (per unit length) as
illustrated in Fig. 6.

k-th wall

segment
e
Y

Fig. 4. Coordinate systems employed in the analysis of thin-walled beams with arbitrary layup.

0

Fig. 5. Definition of u, s, 7.
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Fig. 6. In-plane forces and moments of a plate element.

The first and third rows of Eq. (23) are
€& = ()N e + (002) Ny + (Bi)iM ek + (Bra) Mo (24)
Vowe = (%66)cN gk + (B )M ene (25)
By definition N, is the shear flow, and we write
Ne = q (26)
N, and M, are small and can be neglected (see Assumption 3)
Ny = My = (27)

From Egs. (24) and (25) we obtain

€ = (o) Nex + (Br)iM e (28)
Vgnk = (66)q + (Boo) kM en (29)
When the wall is symmetrical (f;)r = 0, and consequently Egs. (28) and (29) become
1
N“ = e’Z 30
&k (OC“)k ¢k ( )
ngk = (%6),q (31)

(Note however, that these relationships can be applied for unsymmetrical layups, provided that (o), is
evaluated at the “tension neutral” and (o), at the “torque neutral” surface, see Appendix A of Pluzsik
and Kollar (2002).)

By substituting Egs. (22) and (31) (together with €, = du/dx) into Eq. (30) we have

V) = o g (= [ rani+ [asgan) (32)

The equilibrium equation in the axial direction (see Fig. 7) results in

ONg O
o, 00,

Ox on =0 (33)
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dN,
Nt dr dx
T
dq
_ +
ql —:»77 Tq dn dn
Nf

Fig. 7. Forces in the x direction on an element of the wall.

We substitute Eq. (32) into Eq. (33), and write

1 62 s s aq
— (= [ rdpv+ / o669 d ) —£=0 34
(1), o2 ( /0 n 664 AN on (34)
By differentiating with respect to 7, after algebraic manipulation, we obtain
0% g g
ﬂ”k@*‘( 66 )k o 2k+(“11)kW2k:0 (35)
This second order differential equation is valid for every wall segment (k= 1,.. ., K). The following conti-

nuity conditions must be satisfied.
The shear flow must be continuous, hence, we have

kaZCImMTH k=1,....K (36)

dx

The axial displacements () of the adjacent walls must be identical. A necessary condition is that the deriv-
ative of the axial strains are identical. Consequently, we write

gy 0411
— = — =1,....K
(om)k on % (“11)k+1 o _kaH k s > (37)

(Note that in the above equations K + 1 must be replaced by 1, see Fig. 3.)

4. Solution of the governing equations in pure torsion

We consider a simply supported beam (Fig. 8) subjected to a sinusoidal torque ¢ = ¢ sin 7x//. At a simple
support iy = 0, y” = 0. We assume that the beam undergoes pure torsion. (Pure torsion occurs either when

t—fsin z

£ w/uk/m/ F/uuw

I 1

Fig. 8. Simply supported beam subjected to a sinusoidal torque.
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the cross-section of the beam is doubly symmetrical or when the horizontal and vertical displacements (v, w)
of the beam’s axis are constrained.)

4.1. “Exact” solution of torsion for sinusoidal loads

The solution of the problem is assumed to be in the form of the following functions:

9= 5cosn—lx 7 =9,(n) cos? (38)
where ¥ is a constant and 4, is a function of # only.

Note that these functions satisfy the boundary conditions at x =0 and x = /. By substituting Eq. (38)
into Eq. (35) we obtain

o~ n? dq PR
<’”k719 - (ocse)le% + (Ofn)ka—ng) COST =0 (39)

which results in the following second order, ordinary, inhomogeneous differential equation:

2 agk B 2~

Y
(0666)/(?% - (a”)kair]z =ry 1719 (40)

The general solution is (Kreyszig, 1993)

i _ Tk —A (h—k+;7) — Ak (b—kfﬂ)
_ = + Cye *\2 + Cy € 2 41
3 (o), 1k 2k (41)
where
, T (“66)1(
e =— 42
T (our1)y 42)

By substituting Eq. (41) into Egs. (36) and (37) we have

Crae M 4 Cog — Crpsy — Coppge Pttt = e T (43)
(%66) 1 (0%66)
—(otr1) ke P Cry + (o) g kCog = —(011) gy A1 Crgert + (011 g 1€ 1441 Co g (44)
where k=1,...,K.
There are 2 x K equations from which the 2 x K unknowns (Cy i, Cox, kK = 1,.. ., K) can be calculated for
a given 9. From the shear flow the torque and the load can be calculated (for a given 9) as
T = j{qrdn (45)

1 1
t:/ ?dxz/ fqrdndx (46)
0 0

We emphasize that the shear flow (Eq. (41)) is the exact solution of the differential equation system, and
hence, they can be used even in the case when the stiffnesses of the walls differ significantly.

When the loading conditions are not sinusoidal, we can write the Fourier series expansion of the
load function. We obtain the solution of the problem by summing up the solutions of the elements of
the series.
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4.2. Solution by the Ritz method

In the following we derive an approximate solution of the above differential equations by the Ritz meth-
od. The potential energy of the beam is

1 ! !
=3 /0 7{ (Née’gf—qugﬂ)dr]dx— /O Ot dx (47)

where the first term is the strain energy and the second term is the work done by the external load.
The axial force per unit length is (Eq. (33))

laq
Nv:—/ L dx 48
< 0 ar’ ( )

Egs. (30), (31), (38), (48) and (47) result in

H—I/l]{ 1—2%2+ zddx—/lz%dx (49)
=3 ; Ofunz on %664 n A

The shear flow is assumed to be in the form of

~ X
q = q(n)cos— (50)
2K
G =Y _Cii(n) (51)
pa]
where Cj are yet unknown constants and the functions ¢, are illustrated in Fig. 9 and are given below
n o1 .
— —_ h =
by + > when j =k
.= 7 <
¢ fi+1 when j =k +1 when j < k (52)
b1 2
0 else
4n?
——+1 whenj=K+k
¢j:{ bi+ when J + } when j > K
0 else

The shear flow on the kth wall consists of three parts
Gy = Cio19py + Cidy + Cranyi (53)

when j=k when j=k+K

Fig. 9. Functions ¢; (j=1,2,...,2K, k=1,2,...,K).
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By substituting Egs. (50) and (51) into Eq. (49) we obtain
1
= ECT[F]C —c'f (54)

where the kth element of the ¢ and f vectors are
ck:Ck fk:/’t9¢kl"kd1’] kzl,,K (55)

and the ik element of matrix [F] is

K br/2 12 a¢ ad)
Fy = Rt St} |d 56
k ; /W2 ((Oﬂll)k 2 on Oy + (a66)k¢k¢z> n (56)
According to the principle of stationary potential energy, we have
1 .

= ECT[F]C — ¢'f = stationary! (57)
The necessary condition for Eq. (57) is 0n/0C), = 0, which results in the following equation:

[Fle—f =0 (58)
The unknown constants can be calculated as

c=[F''f (59)

When the constants are known, ¢ can be calculated by Eq. (50). From ¢ the torque load can be calculated
by Eq. (46).

5. Beam theory

All the six assumptions of Section 1 are valid, the last one is reiterated here.
The axial strain is (Eq. (9))
, du dy, dy ddp
o VaE T Y@
where y,, x- and Jp are given by Eq. (10).

5.1. Governing equations in pure torsion

For convenience we separate the shear flow ¢ as

q:q0+qm (61)

where ¢q is uniform around the circumference (Fig. 10).
These shear flows result in the following torques:

?sv = j{qol’di’l /fw = %qwrd” (62)
and the total torque is

T=Ty+T, (63)
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) —

oo T

< \ |/‘ A
—>Tw,,190

Fig. 10. Shear flow ¢ = ¢o + ¢.,-

The shear flow results in a rate of twist

i fqocés dn
Y= YRR (64)

where 4 is the enclosed area.
We separate ¢ (Eq. (61)) such that ¢, does not cause a twist. Hence we have

fquaﬁ() d']
JH0ZO 7T _ 65
Y (65)
and
N f‘lo%é dn . f o6 A1y
V=T Ty (66)

We define the bimoment M :, such that the first derivative of M ; is equal to To. (See Eq. (11) for open sec-
tion beams.)

. dMm,
T,= ©
dx
Note, however, that Vlasov’s definition for the bimoment, M,, = § N:wdpy, is different, Eqgs. (48), (67) and
(62) give

i, - S, (69
i vy

dy

(67)

With Eq. (67) we obtain the same equilibrium equations as for open section beams

o
o
~)

(69)

|
&l
|
&l
o
~)
g <
Il
——
(e} ~
——

L
&
=)
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Similarly, as for open section beams, we assume that the rate of twist consists of two terms, 9 = Jg + g
(Eq. (6)) and write the strain—displacement relationship as (Eq. (18))

d
9 dx
r dx U
d
Cdx
and assume that these generalized strains are related to the internal forces by
T, G, I
T(/) = S(/)U) 793 (71)
M El,J\T

(0]
where GI & See and EI » are yet unknown stiffnesses. In the following section we will determine expressions
for the stiffnesses to obtain an acceptable description for the beam with the above governing equations.

5.2. Replacement stiffnesses in pure torsion

To determine the stiffnesses GI & S and EI ., of the beam, we will make use of the derived solution for
the case of beams subjected to a sinusoidal load (Sections 4.1, 4.2, Fig. 8).
The strain energy of the beam is

1 1
U=3 / / a1iNe N + g g | dy | dr (72)
0 —— ~—

0
€ "3,

We introduced the internal forces, generalized strains and the stiffnesses of the beam in the previous section.
By using these definitions the strain energy can be written as

A2 a2 2
1 . ~ ~ LT r u
UZE/O (Tsvﬁ+ TwﬁerMwF)dx:E/o ( v fo o “’)dx (73)

@[t Sww E?w

We reAc*all (Eq. (38)) that for a sinusoidal load ¢ and ¥ are trigonometrical functions, and hence, Tw, T,
and M are also trigonometrical functions and the integration with respect to x can be performed. From
Egs. (72) and (73), together with Eq. (48) we obtain

11 P (0q\’ R
U:EEfallﬁ(a—n> + g dl’] (74)
and
V(7T M
U= 00 75
27I<G[l Swo EI,‘,> (75)

We introduce ¢ = ¢go + ¢q,, (Eq. (61)) into Eq. (74) and obtain

11 P g\
UZEE /OféeqédW-F/“%fJid’?‘i';/“11(%) d’7+2%/qw“66d71 (76)
—_—

0

As a consequence of Eq. (65) the last term in Eq. (76) is zero.
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Introducing Egs. (62) and (67) into Eq. (75) we obtain

v L1 ($ards’ | (Fa,rd9)’ (G Faurds)” -
2n\ Gl See El,
By comparing Eqgs. (76) and (77) we have

o ($qords)’
Gl = +——-— 78
C [ussqidn (78)

($q,rds)’
Su)w = Y 5 5 79
[ %642 dn (79)

2

7 (e "

S Te )
Jon(GH dn
¢o 1s uniform around the circumference, hence Eq. (78) becomes

($rds) AL
ffxeéd’? B ffxesd’? ®1)

To determine S,,,, and EI » the distribution of ¢,, must be known. In Sections 4.1 and 4.2 we determined ¢,,,
and obtained that ¢, depends on the length /, and as a consequence, S,,,, and El » also depend on . To
derive stiffnesses which are independent of the length / we will assume that //b; > 1, where b, is the width
of the kth wall segment.

To calculate the stiffnesses we may either use the “exact’ solution (see Eq. (41)) or the approximate solu-
tion obtained via the Ritz method (see Eq. (50)). To obtain simpler results the approximate solution will be
used. First the expressions for a doubly symmetrical box beam is derived then a general cross-section under-
going pure torsion will be considered.

a[l ==

5.2.1. Doubly symmetrical, box section beams
We consider a simply supported, doubly symmetrical box beam seen in Fig. 11.
GI, is given by Eq. (81), which results in

212
a1, = 21 (82)
X
“ b
1 l 1
! 1 RN
B — b2
> Yy
2_
1 — | ¥

Fig. 11. Box-section beam.
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where

X = (ot66), b1 + (0166) 202

(83)

The beam is subjected to a torque load ¢ = tsinnx/[ (Fig. 8). Under the applied load the beam undergoes a

rate of twist ¢ = ¢ cosnx//, where ¥ is a yet unknown constant.

The box beam has four wall segments, hence the number of functions in the Ritz method is

2K=2x4=28, and ¢ is

8
q=>_ Cit,
k=1

Because of symmetry

Ci=C=C3=0Cy Cs =(C; Cs = Csg

Hence we use the shape functions given in Fig. 12.

With these simplifications Eq. (59) becomes

16(0(11) 2 8(“66) bz

3b, P’ 15

c=[F''f
where
o A2
Cc = C5 f= A/3
Cs A/3
[ (o66),01 +7T_2 (o66),02 7 (s), b1
o2 ro2 ’r 3
_ 12 TE (“66) b1 16(0(11)1 7'52 8(0‘66)1171
(F) == s i
2 2 3 3b, 2 15
7 (2ts),b2
L ? 3
1
@ SRS
1

o +o, 0,10,

P+,

)

N

P td,

Fig. 12. Functions ¢, for a doubly symmetrical box beam.

(86)

(87)
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Solution of Eq. (86) results in

1 % (“663)11711471_22 % (“66)21721471_2
__ / _
_ {9,7.[_2142 2 4 16(30;7111)1 +A7;—22 8(‘3‘616S>lb1 A 1630;711 JrAnz 8 “66 b2
12 (266)1 0 bis (266)2b 2 2
(2%66),01 @ (og6),b2 T ) ( 5 ]A_) ) ( E ZAI_Z)
3 A7+ > AF_ A161111 An28{y(,6 b1 4661, Anzs%(,zlb?
+ % T 15
i A® b
TA Ly, (59)
Cs=9-L3 S
y 16(0(11) ATC— 8(“66) b1
3b; P 15
A? b
”—2 Ay sshbs 7 c1
Co = gL 3 3 P
16(0(11) ATE_ 8(“66) bz
3b, ? 15
The Taylor series expression of these expressions with respect to v/An/l are as follows:
C1 _ quv £+7'C_2 24Y _ (0666)1b1 (“66)2172 TC_4 B
X r3xr | 16(n);,  16(om), | M
b1 bz neglected
~| n? AY 7
[ (0511)1X [
b] neglected
~| m  AY 714
Co=09 —5———+—5""-
P 16(0511)2)( I
b2 neglected
where
Y = (0t66),02 — (%6)1 b1 (91)

and X is defined in Eq. (83). In these expressions we neglect the terms containing (v/Az/I)', when i > 4.
The rate of twist can be calculated by Eq. (66), which is

~ o o6 dn
ﬁ:ﬁcosl—qo T f;; (92)
Eq. (92) gives the uniform shear flow
~ 24
Go =0+ 93
90 § Oles di” ( )
For the box beam §O€66 dn = 2(ae6) 101 + 2(0t66)2b> = 2X and hence
-~ ~A
qo =" (94)

X
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The shear flow ¢, is calculated as

9o =49 — 4o (95)
Eqgs. (84) and (95) give
4o = (Ci = qo)p1 + Cspy + Cobs (96)
By introducing Eq. (96) into (79) and (80) we obtain
£ (GL-&) & 4 >
S(/)(u = < yi- E[w = a1 - Z 97
2X2 &6 (1 + k) 22— (97)
where
b b,
7= +
(ann); (o),
by (o
g =t o1y (98)
2 2
_ Sy + &oms . (99)
5&&(n +n,)
b/ (o
mz@ m=1-n (100)

(X is given by Eq. (83).)

5.2.2. General cross-section beams
We consider a thin-walled closed section beam consisting of K plane wall segments (Fig. 3). The torsional
stiffness G, is given by Eq. (81) which results in

44>
Zle (“66)kbk

where by and (o46); are the width and the shear compliance of the kth wall segment, and A4 is the enclosed
area.

The beam is subjected to a torque load ¢ = tsinmx/l and the beam undergoes a rate of twist
¥ = ¥ cosmx/l. The shear flow of the beam is approximated by (see Eq. (50))

GI, = (101)

i=> Co (102)
k=1

where ¢, is illustrated in Fig. 9, and Cj are yet unknown constants. The equation to determine these con-
stants were derived in Section 4.2, and is reiterated below

[Fle=f (103)
where
C N
G !
c= ) f= ) (104)

Cx Jx
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15" (e i (105)

] (8]

where the elements of vector f and matrices [4,], [42], [B1], [B>] and [Bs] are given in Table 2.
Solution of Eq. (103) is assumed to be in the form of

2 4~

c:E+l—2§+%§+~- (106)

By introducing Eqgs. (105) and (106) into Eq. (103) we obtain

P _ m~ =
(;[A]+[B])(c+7c+l—4c+---):f (107)
which gives
SO ~ 72
[A}c+7([B]c+[A]c)+l_4...:l_zf (108)
——
neglected

In this equation we neglect the terms 7'/l when i > 4. In order to obtain the “best’’ solution we make equal
the multipliers of #'/I' in the two sides of Eq. (108), and write

[Mlce=0 (109)

B¢+ [4]e =f (110)
Matrix [A] is singular. The non-trivial solution of (Eq. (109)) is

€, =¢ = - = ¢g = const Cxil=Cxn=-"=Cx=0 (111)

The choice of the constant is not unambiguous. Here we propose the constant value to be equal to the shear
flow resulting in an infinitely long beam. Hence we write (Eq. (93)):

Table 2
Elements of matrices [4,], [4>], [Bi], [B2], [B3] and vector f
b
(all)j+(zx11)i iz (asg),b,Jr(%ﬁ;, V=
b; b;
(/6611)- (a“)ibi when i=j+1
[4:] — L wheni=j+1 [B1] 6
(1171') (“66>jbi =i
_ I i—i—1 6 P=J
bj / 0 else
0 else (c6) b o
16(0(11 ),- h .. L=J
[45] S [B.] (o66) b7 .
0 clse wheni=j—1
0 else
buri when k < K 8(ats6);bi hen i — 7
£ 21% (B3] 15 when i =
frk k=K 0 else
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G —c PR R
1 = 2 e A K = q = _—
’ S (ets6) b

Eq. (110) gives 2K equations to determine c.
[4]e =f — [B]¢ (113)
[A4] is singular and, consequently, the elements of ¢ cannot be determined unambiguously from Eq. (113)

only. However we have an additional condition which is discussed below.
We may observe (see Egs. (111) and (112)) that

(112)

2K K
90 :ch¢kzzck¢k (114)
=1 =1
and, consequently (see Eqs. (61), (101) and (106))
2 2K
. T =
90 :l_zzck¢k (115)
=1
We now make use of Eq. (65), which can be given in the following form:
K < K ~
= (o) br . (%66)1Par1 = 2o66) bk
;;Q( T+ +2;Q% s =0 (116)

The elements of C; are determined from the following 2K equations: The 2nd through 2Kth equations of
Eq. (113)

2K ~ K
> ApCi=1f—Gy Y Bp k=23,...,2K (117)
j=1 j=1

and from Eq. (116). We substitute C, into Eq. (115) and then into Egs. (79) and (80) which results in

~  ~ 2
<Zflrkbk (7”))
Swm =

~2 ~2 ~ o~

~ ~~ ~ 2

S (o) by | A L SO 42 CK+k<Ck—1 + Ck)

~ ~ 2
(stom (7))
El, = (118)

o = =~ 2 ~2
Zf:l% <(_ Cr1 + Ck) "’%6 CK+k>

Note that we derived explicit expressions for é\lt, S, and Ew which are independent of the beam’s
length.

5.3. Bending—torsion coupling—unsymmetrical beams

In the previous section we considered beams undergoing pure torsion.
As a rule beams undergo lateral and torsional deformations simultaneously. By combining Eq. (16) and
Eq. (71) we write
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Vy Sy Sz S0 Sye IA/y
V2 _ Sz Sz 820 Sz /I\/z (1 19)
9 S0 S0 S0 Sow T
DA Sy Sz So0  Sow T,
where s;; are the shear compliances. To determine the shear compliances we write the shear flow as
9=q,+q.+4qr (120)

where ¢,, g, qr are the shear flows from the shear forces I7y and 172 and from the torque ?, respectively.
The shear flow from the torque is separated as (Eq. (61)):

qr =490+ 9, (121)

Hence we have

/I}y:/qydy’
ﬁ=/%®

(122)
Ty = / rq,dn
/fo> = /qu; d’7
The compliances are determined similarly as for pure torsion. The strain energy of the beam is
1 P (eq\. . 1
UUN+Uq§/OC“;<a—nz) d17+§/0666q2d11 (123)
With the internal forces in Eq. (119) we write
12 12 1.2 1.2 ~ ~ = ~ ~ ~
Uy =5Vysp 5 Vst 5 Tosw+ 3 Toson + ViV ase + 7, Tasio + VeTaso + 7, Tusio
+ /I}z?wszw + /fsv /T(uSwO (124)
By introducing Eqgs. (120 and 121) into the second part of Eq. (123) we have
1
m=§/%@%ﬁ+%+ﬁ+%&+%@+%%+%%+%%+%mﬁn (125)
By comparing Eq. (124) and (125) we obtain
J 26644, dn
Sij = ” i,j=y20,w 126
7 Jai(r)dn [ q,(r)dn (126)

The shear flows g, and ¢,, can be calculated according to the previous section, while ¢, and ¢. according to
classical textbooks.
Eq. (65) results in

Swo = 0 (127)
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6. Verification

In this section we demonstrate the utility of the presented theory through numerical examples.
First we consider a simply supported beam subjected to a sinusoidal load (Fig. 8).
The cross-section of the beam is shown in Fig. 13a. The material properties are given in Table 3. The

thickness of the wall is 2 mm.
For simplicity the dimensions are omitted below (the forces are given in N and the distances in mm).
With these properties the value of o, and g for the flanges (subscript 1) and for the webs (subscript 2) are

(1), =3.0799 x 107 (xg6), = 1.432 x 107>
(011), =3.3784 x 107 (a6), = 1.0989 x 10~*

The stiffnesses of the beam are calculated by Egs. (82), (97), (83) and (91). With by =50 mm and
b, =70 mm we obtain

A = 3500 X =0.0084083 Y = —0.0069763

(128)

7 9 9 7 12 (129)
GI, =2.9138 x 10 Swe = 2.1308 x 10 EI, =7.8507 x 10
The twist is given in Appendix A (Eq. (A.11)) for k=1
~ . X
Y= Z V] smT
~ I’ -
7 - - (130)
nz (at + Swm (1 - Swﬁi 2))
Sww+El (,,’/‘7
For /=150 mm and ¢ = 7sin nx//, at the midspan, we have
¥ = 53893 x 10777 (131)
z z z
b,=50 b,=50 b,=50
| W | | \l/ | | W !
! KN i ~ T A 17
[¥45]| h=2 [0/745]| h=2 [0] | h=2
= = h=1
e | | <
e HN %> H(\l %> II(\l
0] Y < 1 10] Y < 0] Y <
(0] [0] (0]
[745] [0/745] (0]
a b c
Fig. 13. The cross-sections in the numerical examples.
Table 3
Material properties of a graphite epoxy ply
El [MPa] E2 [MPa] G12 [MPa] V12

T300/934 148000 9650 4550 0.3
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We calculated the twist of the middle section also by solving the differential equation system of the walls
(Section 4.1, “accurate solution”), and we obtained

Y =53352%x 10777 (132)

The difference is only —1.01%. Note that by neglecting S, we obtain ;D =3.5870 x 107’7 and by using
Kristek’s theory Kristek (1979) y = 4.4204 x 10" '7. The inaccuracy of these values are 32.77% and
17.15%, respectively, which are not acceptable.

In Fig. 14 we show the results for the same beam as a function of the beam length.

We assumed that the maximum rate of twist on the beam is unity (¥ = cosnx//) and we calculated
the torque (T = T cosmx/l) which results in oJ. In this figure we included the results for the case when only
GI . is considered and when only GI . and El » are taken into account, however S, is assumed to be infinity.
The results of Kristek’s theory are also presented. The shorter the beam the more important the effect
of S(z)ur

For very short beams even the presented method becomes inaccurate. (The reason is that the function of
¢ differs very much from a second order parabola (see Eq. (84)) for very short beams. Because of the same
reason, Vlasov’s theory is also inaccurate for short beams.) In these cases we should model the beam as a
shell structure. The question arises at which beam length may the above theory be used" By considering
Egs. (89) and (90) we can see that the term 7}—; M was neglected with respect to L6( ““ —% for each wall seg-
ment. Hence we write

16(““)1( > 12 8(“66)1(bk

133
3by P 15 (133)
which yields
P (o),
— > 1] 134
57 (o) (134)

We made several numerical comparisons; on the basis of these we found that our beam theory can be used
when

Z ; )i > 1-3 (135)

9666

where K is the number of the wall segments. (Note that for isotropic beams the above condition gives
I/KS % by > 2-5.)

For the beam shown in Fig. 13a and / = 150, § = 2.3877. In Fig. 14 the results, as a function of J, are also
presented (see top axis).

T110°]
5 10 15 5
20 ) Il Il Il
| Gl and EI (S, =inf
15 i “\/ t ( ww )
"Accurate"
104\ / Kristek
GI EI and S,
507 Rl .
0 GI, (EL=0, S, =inf)
0 200 400 600 800 1000 !

Fig. 14. Comparison of the “accurate” solution with the results of the different theories (the cross-section is given in Fig. 13a).
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We also considered the cross-section shown in Fig. 13b. The compliances of the walls are

(a11), = 6.1000 x 107°°  (xg6), = 2.3498 x 10~ (136)
(a11), =3.3784 x 10°°  (og6), = 1.0989 x 10°* (137)

The results are shown in Fig. 15. In this figure we included our beam solution, the “accurate” solution, and
Kristek’s modified solution. It is seen that for beams, when ¢ > 1, the presented beam model is acceptable.

Note that for the case when the layup and the thickness of the wall segments are identical the simple
theory, considering GI, only, is applicable.

For further verification we considered beams with artificial materials, where the compliances differ sig-
nificantly from each other. The values of «;; and «s are shown in Fig. 16. The results of our calculations
are shown in Figs. 17 and 18.

Then we consider a cantilever beam subjected to a concentrated torque at the end 7= 1280 (Fig. 19).
The length of the beam / is 1000 mm. The cross-section is shown in Fig. 13c.

The compliances of the walls are

(ou1), = 1.6892 x 10°° (dts6), = 5.4945 x 105 (13%)
(1), = 6.7568 > 10°° (otg6), = 2.1978 x 10°* (139)
T[10%] 1 . L

16 ! ‘ :

14— Gl and EI, (S, =inf)

- v/ :

;0: \\ Kristek

6 — N/ "Accurate". .

4 - N _—GI.BElLands,,

2 é\It (EAIW:O, S =inf)
0 T

0 500 1000 I

Fig. 15. Comparison of the “accurate” solution with the results of the different theories (the cross-section is given in Fig. 13b).

“Tb,=50 1 b,=50
1 q/ 1 1 q/ 1
: ~ [t : ~ [T
1 h=2 1 h=2
h=2 h=2
ES ES
-+ b,=70 VSN b,=70
5 y |, Y
2 2
1 1
a b

-7 -5
(o);=3x10 (), =(cv;;),x100 ();=3x10" (o)) =(cxy)),

. 4 _
(@t),=1710 ! () =(5),/ 10 (arge)=1710 (0rge)=(t6),% 100

Fig. 16. Cross-sections with artificial materials.
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T110°]
14 L L
12—
10 “ GI,and EI(S,,,=inf)

8- “Accurate"
6 —
4
2
0

N~ =
GI,El,and S,

GI,(EL=0, S, =inf)

T T l
0 500 1000

Fig. 17. Comparison of the “accurate” solution with the results of the different theories (the cross-section is given in Fig. 16a).

T[10°]
250 2 N
~ ~ . [
5 / GI,and EI,(S,,,=inf)
15 ] ‘\\
| \‘\ Kristek
A ""Accurate"
0.5 ) Gl,El,and S, . _
’ GI, (F1,=0, S, ~inf)
0 T - T
0 500 1000

Fig. 18. Comparison of the “accurate” solution with the results of the different theories (the cross-section is given in Fig. 16b).

g T
/Y

( }\T fi

Fig. 19. Cantilever beam subjected to a torque at the end.

The stiffnesses of the beam é?t, Swe and ﬁw are given by Eqgs. (82) and (97):

GI, =13512x 10° S, = 1.0479 x 10°  EI, = 9.9078 x 10"

The function of the twist is given by Eq. (B.7) in Appendix B:
lﬁ = C1 + sz + C3Ci<x7L) + C4€7;J

(140)

(141)
where /. =0.0077, C; = —0.5361 x 107%, C, =0.0095x 1074, C; =0 and C, = 0.5361 x 107%.
The rate of twist (i.e. the first derivative of the twist) is

¥ =Cy+ C32e"™H — Cyle™ = 107" x (0.0095 — 0.0041 x e 077) (142)
The rate of twist was also calculated by the ANSYS FE program. The results are compared to each other in
Fig. 20. It can be seen that the analytical and numerical calculations agree well.
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¥ [10°] . .
1 Analitical solution

0.8

0.6
FE solution

0.4

x

0 200 400 600 800 1000

0.2

Fig. 20. Rate of twist of a cantilever beam subjected to a torque at the end (the cross-section is given in Fig. 16c¢).

7. Conclusions

We gave the governing differential equation system of thin-walled, closed section, orthotropic beams
subjected to a torque load. We have solved the problem for sinusoidal load. Solution only for isotropic case
can be found in the literature (Vlasov, 1961), which gives inaccurate results when the stiffnesses of the wall
segments differ from each other significantly.

We presented a beam theory for thin-walled, closed section, orthotropic beams taking the restrained
warping and the shear deformation into account. They play an important role when the stiffnesses of
the walls (thickness and/or the layup) are significantly different from each other.

We gave numerical examples to demonstrate the accuracy of our beam model. The restrained warping
and the shear deformation may affect the torsional stiffness of the beam, and consequently, the buckling
load and the vibration characteristics. The expressions presented in Kollar and Springer (2003) and in Sap-
kds and Kollar (2002) for the buckling load and in Kolldr (2001) for the period of vibration of open section
beams can be applied directly for closed section beams: in the presented expressions the stiffnesses G/, Se,
El,, derived in this paper must be used.

We must note, however that in most of the practical cases the torsional stiffnesses of closed section
beams are relatively high and the presented effect is significant only for relatively short beams. For these
cases either the presented model must be used or the beam must be modeled by shell (or 3D) finite elements.
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Appendix A. Simply supported beam

We consider a simply supported beam with the length / subjected to a torque with arbitrary distribution.
The torque load is represented by its Fourier series expansion:

t:Zﬁsin? (A1)
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In the following we determine the rate of twist for the kth element of the load: 7, sin wkx /1.

5333

The governing equations are given by Egs. (69)—(71) which—for pure torsion—are reiterated below

rd -
9 dx
W
195 = i —1
dx I
! d
L dx
/fsv /G\]t 19
/7:[1) = Sww 195
M:; E?w r
__i 73 ?Sv ~ . mhx
dx N ty sin——
d
L P E e ’
The boundary conditions are
d*y
v =0 <500
d*y
W =0 TS =0

The rate of twist ¥, and ¥ are assumed in the form
~ . mhx
Vi = Wy sin——
~ kx
19Bk = 19]31{ COSTET

which satisfy the boundary conditions (Eq. (A.5)).
By introducing ¥, and g, into Egs. (A.2)—(A.4) we obtain

rd T mk Tk
— tﬁk cosS——
9 dx J sin@ I /
d k 1 ~ 7Ik ~ n]oc
Y == -1 = — =9 cos —
N dx ’3 T[]Cx (l//k Bk) l
COS —
r _ i > l 3 nk . mhx
L dx_ Bk 7 SlnT
—~ ~ 1k Thx
~ _ Gltl//kn— COST
TSV GIt 19
N Tkx
Tw = Sruw 195 = ww <l//k — 1931{> COST
M, El,| T "

— ~ 7k .
E1u>1913k7 smnT

(A.3)

(A.8)

(A.9)
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— ~
Gltl//kl—zs

&
&
[oN
~ =)
s g

. Thx ~ w2k~ wk\ . mkx
1nnT+Swm (‘//knl—z_ ﬁBknT) smnT

{~ ) nlcx}
tksmT
~ k  ~ kx  —~ ~ 7%k’ kx

—Swo (ka% — 1931{) cosn7+ Elwﬁgkn? cosnT 0

* &

&
%)

(A.10)
From these equations, after algebraic manipulation, we obtain
~ . Thkx
Y= Z 7 s1nT

(A.11)
~ 2

V= te (A.12)
7.E2k2 a\lt + Sw(u 1 - #

—~ K
Sww + Elw 1—2

The rate of twist ¢ is the derivative of y, which is
~ kx
Y= Z Ui cosnT

(A.13)
3. = ! 7 (A.14)
k| Gloes |1 Sew

—~
Sww + E[w 1—2

Appendix B. Cantilever beam subjected to a concentrated torque at the end

We consider a cantilever beam subjected to a torque T at the end (Fig. 19).
The governing equations are given by Egs. (69)—(71), with z = 0.

Substituting Eq. (70) into Eq. (71) and then into Eq. (69) we obtain
2

(G

dx? W 0
"ol 1) >
d —~ d Jp 0
*Swwa S(uw - E[w_

dx2
The boundary conditions are

¥(0)=0  J5(0)=0 (B.2)
M, (=0 T()=T
Using Egs. (70), (71) and (3) we obtain
P0)=0  Uy(0)=0
dvg

(=0 L0 5 (G0 -0l
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We assume the solution of Eq. (B.1) as follows:

Lo =Lon o

Substituting Eq. (B.4) into Eq. (B.1), and omitting ¢**, we have
— 5 )
(GIt + Swru)/1 ‘S'(z)/(i)\/L { l//o } _ { 0 } (BS)
_Sw(o/l Sww - EIw)vz ﬁBO 0

We obtain a non-trivial solution of Eq. (B.5) if the determinant of the matrix on the left hand side is equal
to zero. This condition results in four As:

M=A=0 (B.6)
We obtain the relationship of y/y and ¥, from the second row of Eq. (B.5)
N\
19 — (HU)/.\
. l’bo Sww - Elwiz
Because of the two zero values of A the complete solution of Eq. (B.1) is (Kreyszig, 1993)
l,b = C1 =+ sz —+ C3C;L(x_l‘) —+ C4C_;LX (B7)
and the expression of g is
Sw(»)v — Swwi —
9p = Cy+ C3——2 ' Oy — " e (B.8)

— 4 = €
Swe — EI 2 Swe — EI

Substituting these into the expressions of the boundary conditions (Eq. (B.3)) we obtain an algebraic equa-
tion system which yields the yet unknown constants C; (i=1,2,...,4).
When S, is large (Sp, > 10/*EI ») the results are very close to those given by the expression derived on

the basis of al and EI » (while S, = o0) (Megson, 1990).
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